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Shadow mass and the relationship between velocity and momentum
in symplectic numerical integration

Jason Gans* and David Shalloway†

Biophysics Program, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
~Received 9 August 1999; revised manuscript received 30 November 1999!

It is often assumed, when interpreting the discrete trajectory computed by a symplectic numerical integrator
of Hamilton’s equations in Cartesian coordinates, that velocity is equal to the momentum divided by the
physical mass. However, the ‘‘shadow Hamiltonian’’ which is almost exactly solved by the symplectic inte-
grator will, in general, induce a nonlinear relationship between velocity and momentum. For the~symplectic!
momentum- and midpoint-momentum-Verlet algorithms, the ‘‘shadow mass’’ that relates velocity and mo-
mentum is momentum independent only for a quadratic potential and, even in this case, differs from the
physical mass. Thus, naively assuming the standard velocity-momentum relationship leads to inconsistencies
and unnecessarily inaccurate estimates of velocity-dependent quantities. As examples, we calculate the shadow
Hamiltonians for the momentum- and midpoint-momentum-Verlet solutions of the multidimensional harmonic
oscillator, and show how their velocity-momentum relationships depend on the time step. Of practical impor-
tance is the conclusion that, to gain the full advantage of symplecticity, velocities derived from interpolated
positions, rather than conventional velocity-Verlet velocities, should be used to compute physical properties.

PACS number~s!: 02.70.Ns, 45.10.2b, 45.20.Jj
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I. INTRODUCTION

Many physical systems of particles can be modeled us
Hamilton’s equations with an autonomous Hamiltoni
given by

H~q,p!5
1

2
pTm21p1U~q!, ~1!

wherep andq are momentum and position vectors,m is the
diagonal mass tensor, andU(q) is the potential energy. The
dimensionality of the system isdN, whered is the number of
physical dimensions~e.g., 3! and N is the number of par-
ticles. The trajectory$p(t),q(t)% is determined by

q̇5¹pH, ~2a!

ṗ52¹qH, ~2b!

and initial conditions$q(0),p(0)%.
A numerical integrator of Eqs.~2! that produces a set o

phase space points$qn ,pn%, referring to discrete time point
tn5nh, is said to besymplecticif

CTJC5J, ~3!

where C is the Jacobian of the mapping from$qn ,pn% to
$qn11 ,pn11%:

C[F ]qn11

]qn

]qn11

]pn

]pn11

]qn

]pn11

]pn

G , ~4!

*Electronic address: jdg9@cornell.edu
†Electronic address: dis2@cornell.edu
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g
J[F 0 I

2I 0G , ~5!

and I is thedN-dimensional identity matrix@1#. Symplectic
integrators are popular tools for simulations because of t
excellent stability at large time steps and long-term appro
mate conservation of invariants@2#. The fact that local errors
do not accumulate to grossly violate conservation of inva
ants is, at first glance, surprising. This global property ho
because the$qn ,pn% computed by a symplectic integrator li
either on, or ‘‘very approximately’’ on, an exact solutio
trajectory$q(t), p(t)% of Eqs.~2! for a shadow Hamiltonian

H̃ that can be expressed as an asymptotic series inh aboutH
@1,3#. That is,

qn5q~nh!, ~6a!

pn5p~nh!. ~6b!

Not only positions and momenta, but also their derivativ
are uniquely defined on the shadow trajectory@4,18#. In par-
ticular, the discrete symplectic velocityvn at time pointnh is
uniquely defined as the derivative of the continuous positi
space trajectory

vn[q̇n5
dq~ t !

dt U
t5nh

5¹pH̃Up5pn
q5qn

, ~7!

and satisfies the first Hamilton’s equation, Eq.~2a!. As we
shall discuss, by interpolating theqn to approximateq(t),
Eq. ~7! can be used even when, for practical reasons,H̃ is not
known.

A point that has frequently been overlooked is that, unl
H, H̃ need not be separable into the simple form of Eq.~1!.
As we show in Sec. II A~using one form of the Verlet algo
4587 © 2000 The American Physical Society
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4588 PRE 61JASON GANS AND DAVID SHALLOWAY
rithm as an example!, H̃ will in general be a nonquadrati
function of p. Thus, the shadow mass

m̃[S ]2H̃

]p2 D 21

5S ]v
]pD 21

, ~8!

will depend on bothq and p, and velocity and momentum
will not be linearly related. The multidimensional harmon
oscillator is a special case in which the shadow mass
constant. But even in this case, it does not equal the phys
mass. Moreover, the tensor structure ofm̃ may not preserve
the physical-particle structure ofm, where each particle ha
the same mass in each of thed physical directions. In sum
mary, for both harmonic and anharmonic potentials

pnÞmvn , ~9!

the numerically computed symplectic momenta and velo
ties are not simply related by the physical mass.

The altered relationship between momenta and veloc
has important ramifications. For example, thevelocity-Verlet
algorithm @5# is

qn115qn1h vn
v2

h2

2
m21¹U~qn!, ~10a!

vn11
v 5vn

v2
h

2
m21@¹U~qn!1¹U~qn11!#, ~10b!

where vn
v is the velocity-Verlet ‘‘velocity.’’ This is trans-

formed to an integrator forqn andpn by the replacement

vn
v→m21pn , ~11!

which gives the momentum-Verlet algorithm

qn115qn1h m21pn2
h2

2
m21¹U~qn!, ~12a!

pn115pn2
h

2
@¹U~qn!1¹U~qn11!#. ~12b!

Equations~12! satisfy Eq.~3!, and are thus symplectic.
Equations~10! and ~12!, with substitution~11! are com-

pletely equivalent. However, because of inequality~9!, the
velocity-Verlet ‘‘velocities’’ do not equal the symplectic ve
locities and do not gain the full benefit of symplecticity. A
we will see, the difference between thevn

v and the deriva-
tives of a smooth global interpolation of theqn can signifi-
cantly degrade computed results. We regard the na
‘‘velocity-Verlet’’ as a misnomer that may lead to unwary
use thevv as velocities when computing physical obse
ables. We suggest that it be replaced with the na
‘‘momentum-Verlet’’ algorithm, since momentaare cor-
rectly computed.

Similar considerations apply to other symplectic integ
tors as well. For example, the ‘‘midpoint’’ form of th
velocity-Verlet integrator presented by Tuckermanet al. @6#
is
a
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i-

s

e

-
e

-

vn11
v 5vn

v2hm21 ¹US qn1
h

2
vn

vD , ~13a!

qn115qn1
h

2
~vn11

v 1vn
v!. ~13b!

Here the gradient of the potential is evaluated at the m
point, rather than at the beginning, of the time interval. Sk
et al. @2# have shown that the midpoint-momentum-Ver
integrator@7#, which results from substituting Eq.~11! into
Eqs.~13!, satisfies Eq.~3! and thus is symplectic:

pn115pn2h¹US qn1
h

2
m21pnD , ~14a!

qn115qn1
h

2
m21~pn111pn!. ~14b!

However, as with the velocity-Verlet algorithm, the veloc
ties given by Eqs.~13! are inconsistent with the symplecti
solution.

We use the multidimensional harmonic oscillator as
example to analytically elucidate these points. In Sec. I
we analyze its velocity-Verlet solution, and show that t
velocity-Verlet ‘‘velocities’’ are inconsistent with the pos
tion trajectory. In Sec. II C we derive the analytic shado
Hamiltonian for the momentum-Verlet algorithm and sho
how the time-step-dependent shadow mass relates veloc
and momenta. We extend this analysis to the midpo
momentum-Verlet algorithm in Sec. II D. In Sec. II E w
show how naive use of the velocity-Verlet ‘‘velocities
leads to unnecessarily large energy fluctuations, and how
can be remedied by the use of interpolated velocities.

II. RESULTS

A. Nonlinear symplectic relationship between momentum
and velocity

The shadow Hamiltonian for time-reversible algorithm
such as momentum- or midpoint-momentum-Verlet alg
rithms, can be expanded as an asymptotic series using
powers ofh,

H̃~q,p!5H~q,p!1G~h2;q,p!, ~15!

whereG is a functional series beginning inO(h2):

G~h2;q,p![
h2

2!
(2)g~q,p!1

h4

4!
(4)g~q,p!1•••. ~16!

The ( i )g(q,p) can be determined using the method of mo
fied equations@3,8#, which demands order-by-order~in h)
consistency between Eqs.~2! ~with H→H̃) and Eqs.~12!.
Straightforward application to the momentum-Verlet alg
rithm yields in lowest order
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(2)g~q,p!5
1

6
pTm21

]2U~q!

]q2
m21p

2
1

12
@¹U~q!#Tm21¹U~q!. ~17!

WhenU is quadratic, this expression is quadratic in bo
p and q. Thus to this order the shadow mass is a cons
m̃5@m211(h2/6) m21]2U/]q2m21#21. It is easy to show
that G will contain only quadratic terms inq and p to all
orders inh2; thus the exact shadow Hamiltonian is quadra
but hasm̃Þm and]2H̃/]q2Þ]2H/]q2.

WhenU is anharmonic, the shadow mass will depend
q in O(h2). Furthermore, in higher orders,G(q,p) will con-
tain nonquadratic terms in p such as
(h4/720m4) p4]4U(q)/]q4 and (h6/1680m5) p4@]3U(q)/
]q3#2 ~for simplicity, here we ignore tensor ordering!, andm̃
will be momentum dependent. However, for smallh the
momentum-dependence may be small in regions where
higher derivatives ofU(q) are not too large. When a ha
monic approximation is appropriate,m̃ can be approximated
as a constant tensor, though it may differ between poten
catchment regions. Analogous results hold for the midpo
momentum-Verlet algorithm.

B. Velocity-Verlet solution of the multidimensional harmonic
oscillator

The form of the shadow Hamiltonian can be calcula
analytically~i.e., to all orders inh2) for the multidimensional
harmonic oscillator. The Hamiltonian is

H~q,p!5
1

2
pTm21p1

1

2
qTKq, ~18!

where K and m are symmetric, positive-definite matrice
The exact solutions forq(t) andp(t) are

q~ t !5m21@cos~vt !mA1sin~vt !mB# ~19!

and

p~ t !5mTv@2sin~vt !mA1cos~vt !mB#, ~20!

where

v[@~m21!TKm21#1/2, ~21!

A andB are constant vectors determined by the initial co
ditions

A5q~0!, ~22a!

B5m21v21~m21!Tp~0! ~22b!

andm is any real matrix that satisfies

m5mTm. ~23!

m is arbitrary up to an orthogonal or pseudo-orthogo
transformationQ, i.e.,

m5Qm1/2, ~24!
nt
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where m1/2 is the ~unique up to eigenvector degenerac!
symmetric matrix that satisfiesm5m1/2m1/2. The choice ofQ
determines the vector basis in whichv is represented.

The Störmer form of the Verlet algorithm@9# is

qn1152qn2qn212h2m21¹U~qn!. ~25!

It has been shown@10,11# that in one dimension it produce
positionsqn that can be interpolated by a sinusoid having t
modified frequency

ṽ5
1

h
arccosS 12

~vh!2

2 D . ~26!

We generalize to higher dimensions by seeking an in
polation having the form of Eq.~19!:

q~ t !5m̃21@cos~ṽt !m̃A1sin~ṽt !m̃B#, ~27!

whereṽ is given by Eq.~26! as a matrix equation

ṽ5
1

h
arccosS I 2

~vh!2

2 D . ~28!

Each eigenvalue ofṽ is greater than the corresponding e
genvalue ofv for h.0, and limh→0ṽ5v. Equation~27!
will satisfy

q~nh!5qn ~29!

if

m̃5h~v! m1/2, ~30!

whereh is any real, invertible function ofv. Becauseh is
not yet fixed,m̃ and the shadow mass cannot be determin
from the position trajectory alone.

The second-order discrete derivative of the Sto¨rmer-
Verlet trajectory defines ‘‘velocities’’

vn
v5

qn112qn21

2h
~31!

which are the same as those produced by the velocity-Ve
algorithm. As illustrated for the one-dimensional harmon
oscillator in Fig. 1, they donot equal the derivative of the
position trajectory Eq.~27!: vn

vÞdq(t)/dtu t5nh . The incon-
sistency is evident whether we use the interpolation of
~27! ~which we will soon see is an exact symplectic traje
tory! or a simple cubic-spline interpolation~which is visually
almost identical!. In fact, any globally smooth trajectory tha
matches both the velocity-Verlet positions and velocities w
necessarily have kinks, such as those in the dotted interp
tion in Fig. 1. In summary, Eqs.~27! and ~31! are not con-
sistent components of a solution to a shadow Hamiltonia

C. Momentum-Verlet solution of the multidimensional
harmonic oscillator

Contrast this dilemma with the outcome when the sa
interpolation procedure is applied to the position-moment
output of the momentum-Verlet algorithm: Theqn are iden-
tical to those produced by the Sto¨rmer-Verlet and velocity-
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4590 PRE 61JASON GANS AND DAVID SHALLOWAY
Verlet algorithms and, as before, can be interpolated by
~27!. Following the same procedure, we look for an interp
lation of thepn having the form of Eq.~20!:

p~ t !5m̃Tṽ@2sin~ṽt !m̃A1cos~ṽt !m̃B#. ~32!

Satisfaction of Eq.~29! again requires thatm̃ have the form
given by Eq.~30!. In addition, substituting Eqs.~28!, ~27!,
and ~30! into Eq. ~12a! implies that

h25ṽ21vF I 2
~vh!2

4 G1/2

. ~33!

@Equation~28! implies that the magnitude of the eigenvalu
of h are all less than 1.# It is easy to verify that Eq.~32!,
along with the auxiliary conditions of Eqs.~28!, ~30!, and
~33!, satisfies

p~nh!5pn , ~34!

so we have consistent interpolations for both theqn andpn .
Referring to the exact quadratic solution specified by E

~18!–~24!, we recognize that the interpolated phase-sp
trajectory specified by Eqs.~27! and~32! is an exact solution
of the modified Hamiltonian

H̃~p,q!5
1

2
pTm̃21p1

1

2
qTK̃q, ~35!

where

K̃5m̃Tṽ2m̃, ~36!

m̃5m̃Tm̃, ~37!

and m̃ is specified by Eqs.~30! and ~33!. Thus, H̃ is the
shadow Hamiltonian for the symplectic momentum-Ver
solution of the multidimensional harmonic oscillator. Sim
larly, m̃ is the shadow mass tensor satisfying Eq.~8!, K̃ is the
shadow spring-constant tensor, andṽ is the shadow angular

FIG. 1. Interpolation of a velocity-Verlet solution of the on
dimensional harmonic oscillator. The dots are at theqn ; the vectors
have slope given byvn

v . The solid line is the sinusoidal interpola
tion of Eq. ~27!, which corresponds to the symplectic trajecto
The dotted line is a simple harmonic interpolation that matches b
the qn andvn

v .
q.
-

s.
e

t

frequency tensor. As expected, Eq.~35! is consistent with the
O(h2) expansion obtained from the method of modifi
equations in Sec. II A.

As required for a physical interpretation,m̃, K̃, andṽ are
all symmetric. However, degenerate eigenvalues ofm will
not be degenerate inm̃ unlessv has the same degeneracie
For example, ifH represents, in physical three space, a sin
particle of massm ~i.e., a triply degenerate mass tensor! in an
anisotropic harmonic oscillator potential having three diffe
ent eigenvalues,m̃ will also have three different eigenvalue
Thus, while the computed trajectory is an exact solution
the shadow HamiltonianH̃, this Hamiltonian does not de
scribe the same type of physical system.

As noted above, the eigenvalues ofṽ are larger than the
corresponding eigenvalues ofv. Rearranging Eq.~36! to ex-
pressṽ as a function ofK̃ and m̃ @i.e., analogously to Eq
~21!#, we can understand the frequency shifts as the co
bined result of changes in both the mass and spring-cons
tensors. Interestingly, Eqs.~28!, ~30!, ~33!, ~36!, and ~37!

imply that, for momentum-Verlet, the eigenvalues of bothK̃

andm̃ are smaller than their physical counterparts, and th
changes have opposing effects on the shadow frequen
However, the mass eigenvalues decrease faster than
spring-constant eigenvalues~with increasingh), resulting in
frequency increases. Figure 2 plots the normalized eigen
ues of the momentum-VerletK̃, m̃, and ṽ for a single par-
ticle in an anisotropic three-dimensional quadratic well.

The analytic relationship between the momenta and
locities on the shadow trajectory is given by Eq.~7!:

vn5m̃21pn~valid only for the harmonic oscillator!,
~38a!

5m̃21mvn
v . ~38b!

th

FIG. 2. The normalized shadow mass, spring-constant
angular-frequency eigenvalues for the momentum-Verlet solu
of a particle in a three-dimensional, anisotropic harmonic poten
The eigenvalues ofv, $v1 , v2 , v3%, are $1.0,A0.75,A0.5%. The
solid, dashed, and dotted lines are the corresponding eigenvalu

ṽ, m̃, and K̃ as a function ofv1h. The plots terminate at the
instability limit @see Eq.~28!#.
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The second line provides theh-dependent relationship be
tween the velocity-Verlet and the symplectic velocities
the multidimensional harmonic oscillator, and shows t
former are smaller than the latter beginning inO(h2) @12#.
Since the position trajectory is accurate inO(h2), ignoring
this difference degrades the overall accuracy of the a
rithm. We will see a manifestation of this when we consid
energy fluctuations in Sec. II E.

D. Midpoint-momentum-Verlet solution
of the multidimensional harmonic oscillator

Following the derivation used for the momentum-Ver
algorithm, we find that the continuous trajectory that int
polates that midpoint-momentum-Verlet solution of the m
tidimensional harmonic oscillator is given by Eqs.~27!, ~30!,
and ~32!, but with the altered expression

h25ṽ21vF I 2
~vh!2

4 G21/2

. ~39!

~In contrast with the momentum-Verlet form forh, h now
has eigenvalues of magnitude greater than 1.! The shadow
Hamiltonian@13# is again given by Eqs.~35!–~37!, but be-
cause h is different, m̃ and K̃ will differ from their
momentum-Verlet counterparts. In contrast with t
momentum-Verlet case, the eigenvalues of thesem̃ and K̃
are bothlarger than their physical values. The eigenvalues
K̃ increase faster than those ofm̃ with increasingh, resulting
in the same shadow frequency increases as observed wit
momentum-Verlet algorithm.

The midpoint-velocity-Verlet ‘‘velocities’’ for the multi-
dimensional harmonic oscillator are related to the symple
velocities by Eq.~38b! using the appropriatem̃ @12#. In this
case the Verlet ‘‘velocities’’ are larger than the symplec
velocities.

E. The symplectic energy fluctuation

Since thevn
v do not equal thevn , they do not correspond

to a trajectory that remains on a fixed shadow energy surf
Thus, they are not fully constrained by symplecticity and
energies computed using them can fluctuate excessiv
This agrees with Mazur@14#, who has previously noted tha
the energy fluctuations computed using the velocity-Ve
velocities overestimate the algorithmic error.

Mazur has gone on to suggest that energy fluctuations
therefore not a good measure of algorithmic accuracy@14#.
However, we can now show that the energy fluctuatio
computed using the appropriate velocities@i.e., the vn de-
fined by Eq.~7!# can be related to the microcanonical e
semble average of the mean-square deviation between
physical and shadow Hamiltonians, whichis a good measure
of accuracy. Since we know thatH̃ is invariant on the sym-
plectic trajectory, the ergodic hypothesis implies that
equal-time-weighted trajectory average approaches~in the
long-trajectory limit! the microcanonical ensemble avera
for a fixed valueẼ of H̃. Thus, the microcanonical ensemb
mean-square average of the deviation betweenH andH̃, ad-
justed for the difference between their means@15#, is
r
t

-
r

t
-
-

f

the

ic

e.
e
ly.

t

re

s

the

n

^@~H̃2H !2^~H̃2H !& Ẽ#2& Ẽ

5 lim
N→`

N21(
n51

N F ~Ẽn2En!2N21(
n51

N

~Ẽn2En!G2

~40a!

5 lim
N→`

N21(
n51

N S En2N21(
n51

N

EnD 2

, ~40b!

whereEn andẼn are the values ofH andH̃, respectively, at
corresponding phase-space points.~The Ẽn terms cancel
sinceẼn5Ẽ at all points.!

BecauseH and H̃ induce different explicit relationships
between momenta and velocities through Eq.~2a!, the mo-
menta that are used in evaluating them at the same p
differ and some care is needed when evaluatingE. Since
there is no ambiguity inq(t) and its derivativev(t), we can
expressE as a function of these variables. In particular,

En5
1

2
q̇n

Tmq̇n1U~qn!. ~41!

When this form is used, the magnitude of the energy fluct
tions defined by Eq.~40b! doesprovide a useful measure o
accuracy. The incorrect method—evaluatingE as a function
of q(t) and p(t)—corresponds to using velocity-Verlet ve
locities to compute the energy.

For illustration, Fig. 3 compares the energy fluctuations
the numerical solution for a one-dimensional harmonic os
lator as a function ofh when the energyE is computed using
either momentum- or velocity-Verlet velocities. The roo
mean-square energy fluctuation computed using
momentum-Verlet velocities is about a factor of 3 smal
than that computed with the velocity-Verlet velocities~ex-
cept ash approaches the instability limit,vh52). The pre-
cise interpolation given by Eq.~19! is not needed for this
result: essentially the same fluctuations are computed~except

FIG. 3. Root-mean-square~rms! total energyE fluctuation~nor-
malized by the rms potential energy fluctuation! of the Verlet tra-
jectory of a one-dimensional harmonic oscillator computed us
En5

1
2 vn

vTmvn
v1

1
2 qn

TKqn ~using the velocity-Verlet velocities; dot

ted line! andEn5
1
2 q̇n

Tmq̇n1
1
2 qn

TKqn ~using the momentum-Verle
velocities; solid line!.
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4592 PRE 61JASON GANS AND DAVID SHALLOWAY
very close to the instability limit! using a cubic-spline inter
polation. The main requirement is that the interpolati
should be globally consistent and adequately smooth.

In both cases, the energy fluctuations areO(h2). As
pointed out by Mazur@14#, most of the velocity-Verlet en-
ergy fluctuation results from velocity error. This error is r
moved when the symplectic velocities are used. The sma
symplecticO(h2) fluctuation is a true measure of the micr
canonical average of the deviation ofH̃ from H; in the case
of the harmonic oscillator, this mirrors theO(h2) deviation
of ṽ from v. The situation is similar when the energy flu
tuations of the midpoint-velocity-Verlet and midpoin
momentum-Verlet algorithms are compared.

III. CONCLUSION

Ignoring the difference between the shadow and phys
mass in symplectic numerical integration, and the related
ror of assuming that the velocity-Verlet velocities are cons
tent with the symplectic shadow trajectory, has caused s
confusion. We have examined this explicitly for the multid
mensional harmonic oscillator by examining the relations
between the standard and midpoint-velocity-Verlet velocit
and the corresponding symplectic velocities. The differen
are ofO(h2) and globally bounded, so the symplectic glob
stability properties, though impaired, are retained in we
ened form even when the velocity-Verlet velocities are
sumed to be correct. But since more accurate results are
tained when it is recognized that only momenta, and
velocities, are correctly computed by the algorithms, we s
gest that it is more appropriate to use the term ‘‘moment
Verlet’’ in describing them.

Even without the symplectic analysis, it is evident th
something is wrong with velocity-Verlet velocities, sinc
they do not match derivatives of smooth interpolations of
discrete position trajectory and they yield unnecessarily la
energy fluctuations@14#. The correct symplectic relationshi
ly
all
se
no

il-

y
s

o
a
-

er

al
r-
-
e

p
s
s

l
-
-
b-
t
-

t

e
e

between the numerically computed momenta and velocit
and the shadow Hamiltonian that generates them, canno
obtained without accounting for the difference between
physical and shadow masses. For example, Toxvaerd@16#, in
an effort to improve energy conservation, rescaled
velocity-Verlet velocities and constructed, for the on
dimensional harmonic oscillator, a ‘‘shadow Hamiltonian
that is, to O(h2), a multiple of the shadow Hamiltonian
given by Eq.~35!. Although ~to low order!, it conserves en-
ergy to the same extent asH̃ does, it does not satisfy Hamil
ton’s equations, and so can not be considered to be a
shadow Hamiltonian.

Our main practical conclusion is that derivatives of inte
polated position trajectories, rather than velocity-Verlet ‘‘v
locities,’’ should be used for computing energy fluctuatio
and physical velocity-dependent observables~e.g., diffusion
constants@17#!. For the simple case of the multidimension
harmonic oscillator, we were able to calculate the symple
interpolation. However, for general anharmonic problem
the N computed phase-space points and the knowledge
they have been generated by a symplectic integrator will
be adequate to uniquely specify an interpolation, the shad
mass, or the shadow Hamiltonian. However, when phys
considerations imply that an upper limit can be placed on
rate of variation of the position trajectory, we expect th
velocities computed by differentiating a sufficiently smoo
interpolation will give more accurate results than t
velocity-Verlet velocities. Similar considerations apply to t
midpoint form of the velocity-Verlet algorithm and probab
to symplectic numerical integrators in general.
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